sábado, 4 de junio de 2011

RDES INALAMBRICAS, CABLEADAS Y SATELITALES

El término red inalámbrica (Wireless network en inglés) es un término que se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagneticas. La transmisión y la recepción se realizan a través de puertos.
Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho mas exigente y robusta para evitar a los intrusos.
En la actualidad las redes inalámbricas son una de las tecnologías más prometedoras.
Existen dos categorías de las redes inalámbricas.
  1. Larga distancia: estas son utilizadas para distancias grandes como puede ser otra ciudad u otro país.
  2. Corta distancia: son utilizadas para un mismo edificio o en varios edificios cercanos no muy retirados.

[editar] Tipos


Cobertura y estándares.
Según su cobertura, se pueden clasificar en diferentes tipos:

[editar] Wireless Personal Area Network

Artículo principal: WPAN
En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.

[editar] Wireless Local Area Network

Artículo principal: WLAN
En las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (del inglés, High Performance Radio LAN), un estándar del grupo ETSI, o tecnologías basadas en Wi-Fi, que siguen el estándar IEEE 802.11 con diferentes variantes.

[editar] Wireless Metropolitan Area Network

Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).

[editar] Wireless Wide Area Network

Véase también: WAN
Una WWAN difiere de una WLAN (wireless local area network) en que usa tecnologías de red celular de comunicaciones móviles como WiMAX (aunque se aplica mejor a Redes WMAN), UMTS (Universal Mobile Telecommunications System), GPRS, EDGE, CDMA2000, GSM, CDPD, Mobitex, HSPA y 3G para transferir los datos. También incluye LMDS y Wi-Fi autónoma para conectar a internet.[1]

[editar] Características

Según el rango de frecuencias utilizado para transmitir, el medio de transmisión pueden ser las ondas de radio, las microondas terrestres o por satélite, y los infrarrojos, por ejemplo. Dependiendo del medio, la red inalámbrica tendrá unas características u otras:
  • Ondas de radio: las ondas electromagnéticas son omnidireccionales, así que no son necesarias las antenas parabólicas. La transmisión no es sensible a las atenuaciones producidas por la lluvia ya que se opera en frecuencias no demasiado elevadas. En este rango se encuentran las bandas desde la ELF que va de 3 a 30 Hz, hasta la banda UHF que va de los 300 a los 3000 MHz, es decir, comprende el espectro radioelectrico de 30 - 3000000000 Hz.
  • Microondas terrestres: se utilizan antenas parabólicas con un diámetro aproximado de unos tres metros. Tienen una cobertura de kilómetros, pero con el inconveniente de que el emisor y el receptor deben estar perfectamente alineados. Por eso, se acostumbran a utilizar en enlaces punto a punto en distancias cortas. En este caso, la atenuación producida por la lluvia es más importante ya que se opera a una frecuencia más elevada. Las microondas comprenden las frecuencias desde 1 hasta 300 GHz.
  • Microondas por satélite: se hacen enlaces entre dos o más estaciones terrestres que se denominan estaciones base. El satélite recibe la señal (denominada señal ascendente) en una banda de frecuencia, la amplifica y la retransmite en otra banda (señal descendente). Cada satélite opera en unas bandas concretas. Las fronteras frecuenciales de las microondas, tanto terrestres como por satélite, con los infrarrojos y las ondas de radio de alta frecuencia se mezclan bastante, así que pueden haber interferencias con las comunicaciones en determinadas frecuencias.
  • Infrarrojos: se enlazan transmisores y receptores que modulan la luz infrarroja no coherente. Deben estar alineados directamente o con una reflexión en una superficie. No pueden atravesar las paredes. Los infrarrojos van desde 300 GHz hasta 384 THz.
¿Que es una red Satelital ?
Como su nombre lo indica son redes que utilizan como medios de transmisión satélites artificiales localizados en órbita alrededor de la tierra. En este tipo de redes los enrutadores tienen una antena por medio de la cual pueden enviar y recibir. Todos los enrutadores pueden oír las salidas enviadas desde el satélite y en algunos casos pueden también oír la transmisión ascendente de los otros enrutadores hacia el satélite.
La tecnología de redes satelitales, representada por satélites poderosos y complejos y el perfeccionamiento de las estaciones terrenas están revolucionando el mundo. Así por ejemplo, la necesidad de interconectar terminales remotos con bases de datos centralizadas, de una manera veloz y eficiente, han conducido a una nueva tecnología conocida como 'Very Small Apertura Terminal (VSAT)".
Un satélite artificial puede ampliar las señales antes de devolverla, que los hace ver como una gran repetidora de señales en el cielo. El satélite contiene varios transpondedores, cada uno de los cuales capta alguna porción del espectro, amplifica la señal de entrada y después la redifunde a otra frecuencia para evitar la interferencia con la señal de entrada. Los haces retransmitidos pueden ser amplios y cubrir una fracción substancial de la superficie de la tierra, o estrechos y cubrir un área de solo cientos de Kms. de diámetro.
CONEXIONES (TIPOS, CONECTORES, ETC)
Aunque la mayoría de los canales de acceso múltiple se encuentran en las LAN, el tipo WAN que usa canales de acceso múltiple: las WAN basadas en comunicación satelital.
Los satélites de comunicación por lo general tienen un haz que cubre una parte de la Tierra debajo de él, variando de un haz amplio de 10.000 km de diámetro hasta un haz localizado de 250 Km. de diámetro. Las estaciones dentro del área de haz pueden enviar marcos al satélite en la frecuencia de enlace ascendente. El satélite entonces vuelve a difundirlos por la frecuencia de enlace descendente. Se usan diferentes frecuencias para el enlace ascendente y descendente a fin de evitar que el transpondedor entre en oscilación. Los satélites sin procesamiento "a bordo", sino que simplemente repiten lo que escuchan (la mayoría de ellos), con frecuencia se llaman satélites de codo.
Cada antena puede enfocarse en un área, transmitir algunos marcos, y luego enfocarse en un área nueva. El enfoque es electrónico, pero aun así tarda algunos microsegundos. El tiempo durante el cual se apunta un haz sobre un área dada se llama el tiempo de morada o permanencia (dwell time). Para una máxima eficiencia, este tiempo no debe ser muy corto, porque se desperdiciará demasiado tiempo moviendo el haz.
Al igual que en las LAN, uno de los puntos clave del diseño es la manera de repartir los canales del transpondedor, Sin embargo, a diferencias de las LAN, es imposible la detección de portadora, debido al retardo de propagación de 270 mseg. Cuando una estación detecta el estado de una canal de enlace descendente, escucha lo que ocurrió hace 270 mseg. La detección del canal de enlace ascendente generalmente es imposible. Como resultado, los protocolos CSMA/CD (que suponen que una estación transmisora puede detectar colisiones en los primeros tiempos de bit, y retraerse si está ocurriendo una) no pueden usarse con los satélites. De ahí la necesidad de otros protocolos.
ANCHO DE BANDA
La banda C fue la primera en destinarse al tráfico comercial por satélite; en ella se asignan dos intervalos de frecuencia, el más bajo para tráfico de enlaces descendentes (desde el satélite) y el superior para tráfico de enlaces ascendente(hacia el satélite). Para una conexión dúplex se requiere un canal en cada sentido. Estas bandas ya están sobre pobladas porque también las usan las portadoras comunes para enlaces terrestres de microondas.
La siguiente banda más alta disponible para las portadoras de telecomunicaciones comerciales es la banda Ku. Esta banda no está congestionada (todavía), y a estas frecuencias los satélites pueden estar espaciados tan cerca como 1 grado. Sin embargo, existe un problema: la lluvia. El agua es un excelente absorbente de estas microondas cortas. Por fortuna, las tormentas fuertes casi nunca abarcan áreas extensas, de modo que con usar varia estaciones terrestres ampliamente separadas en lugar de una sola se puede resolver el problema, a expensas de gastar más en antenas, cables y circuitos electrónicos para conmutar con rapidez entre estaciones. Ya se asignó también ancho de banda en la banda Ka para tráfico comercial por satélite, pero el equipo necesario para aprovecharlo todavía en caro. Además de estas bandas comerciales, existen muchas bandas gubernamentales y militares.
Un satélite normal tiene entre 12 y 20 transpondedores, cada uno con un ancho de banda de 36 a 50 MHz. Se puede usar un transpondedor de 50 Mbps para codificar una sola corriente de datos de 50 Mbps, 800 canales digitales de voz a 64 kbps, o varias combinaciones distintas. Además, dos transponedores pueden aplicar diferentes
polarizaciones a la señal, de modo que puedan utilizar la misma gama de frecuencias sin interferencia.
En los primeros satélites, la división de los transpondedores en canales era estática, dividiendo el ancho de banda en bandas de frecuencia fijas (FDM). Hoy en día también se usa la multiplexión por división en el tiempo, debido a su mayor flexibilidad.
Los primeros satélites tenían un solo haz espacial que iluminaba la Tierra entera. Con la enorme reducción en el precio, tamaño y requerimientos de energía de la microelectrónica se ha hecho posible una estrategia de difusión mucho más compleja. Cada satélite está equipado con múltiples antenas y transpondedores. Cada haz descendente se puede enfocar en un área geográfica pequeña, de modo que pueden tener lugar de manera simultánea múltiples transmisiones ascendentes y descendentes. Los llamados haces puntuales normalmente tienen forma elíptica y pueden ser tan pequeños como algunos cientos de kilómetros de diámetro. Un satélite de comunicaciones para Estados Unidos tendría normalmente un haz grande para los 48 estados contiguos más haces puntuales para Alaska y Hawai.
Los satélites de comunicaciones tienen varias propiedades que son radicalmente diferentes de los enlaces terrestres punto a punto. Para empezar, aunque las señales hacia y desde un satélite viajan a la velocidad de la luz (cerca de 300.000 km/seg), la gran distancia del viaje redondo introduce un retardo sustancial. Dependiendo de la distancia entre el usuario y la estación terrena y de la elevación del satélite sobre el horizonte, el tiempo de tránsito de extremo a extremo es de 250 a 300 mseg. Una cifra común es 270 mseg (540 para un sistema de VSAT con un eje).
Como base de comparación, los enlaces terrestres de microondas tienen un retardo de propagación de casi 3 seg/km y los enlaces de cable coaxial o fibra óptica tienen un retardo de aproximadamente 5 seg/km (las señales electromagnéticas viajan más rápidamente en el aire que en los materiales sólidos).
Otra propiedad importante de los satélites es que por su naturaleza son medios de difusión. No cuesta más mandar un mensaje a miles de estaciones dentro del alcance de un transpondedor que mandarlo a una sola. En algunas aplicaciones, esta propiedad es muy útil. Aun cuando la difusión se puede simular mediante líneas punto a punto, la difusión por satélite puede ser mucho más económica. Por otro lado, desde el punto de vista de la seguridad y confidencialidad, los satélites son
SOTFWARE   NECESARIO (PROTOCOLO, ETC)
Esta red en segmento terreno conjunto de estaciones de transmisión / recepción de los usuarios del sistema, a través de los cuales se accede al satélite y uno espacial conjunto de elemento en orbita y estaciones y de seguimiento y control situadas en la tierra pudiendo ser clasificados según la red que se constituya y según el tipo de servicio que se preste.
 Se emplean cinco clases de protocolos en el canal de acceso múltiple (de enlace ascendente): SONDEO, ALOHA, FDM, TDM, CDMA. El problema principal es con el canal de enlace ascendente, ya que el de enlace descendente sólo tiene un transmisor (el satélite) y por tanto no tiene el problema de reparto del canal.
Atendiendo la topología , tenemos configuraciones en estrella y en malla, la primera es habitual, y en ella la emisión hacia el satélite se hace por una antena de dimensión mucho mas grande que la de los receptores; la estación principal se denomina maestra (HUB) y puede servir de enlace (dos saltos) para comunicarse entre estaciones secundarias, aunque no es común . De acuerdo a los flujos en la red se presenta cuatro configuraciones distintas.
  • Punto-Multipunto Unidireccional.
  • Multipunto-punto direccional.
  • Punto-multipunto-Bidireccional.
  • Punto-Punto Bidireccional
  • Sondeo
un desastre completo: todos pueden oír todo. El cifrado es esencial cuando se requiere seguridad.





No hay comentarios:

Publicar un comentario